ALTINAY FORMWORK STROY SERVICE

DESIGN BASICS

GREEN CHOICE WOOD

https://www.youtube.com/watch?v=gtSIF6tuz6c

The state of the s		
In party Vinneral		

l							
l	Rev-3						
ľ	Rev-2						
l	Rev-1						
١.	Rev Description		Date	Name	Check		
	D	ate	Drawn	Check	Appr.	Scale	l i
	10 Δι	ın 2014	A Ricanova	F Yasar	F Yasar	I Dusembayeya	1

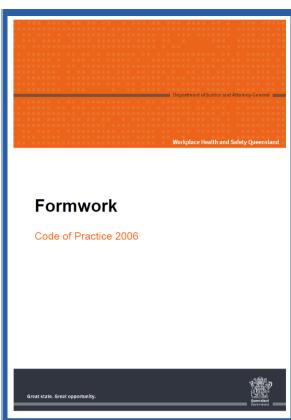
ALTINAY FORM WORK

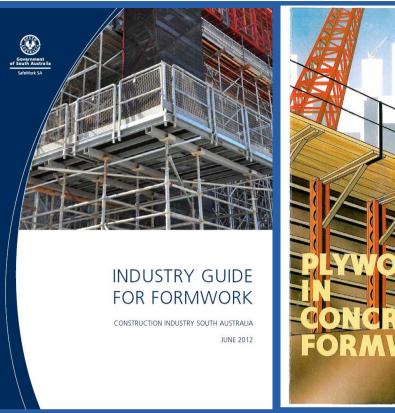
Rev

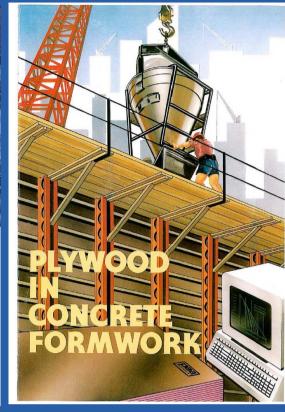
00

YOUR SOLUTION PARTNER

TOMORROW WORLD TODAY

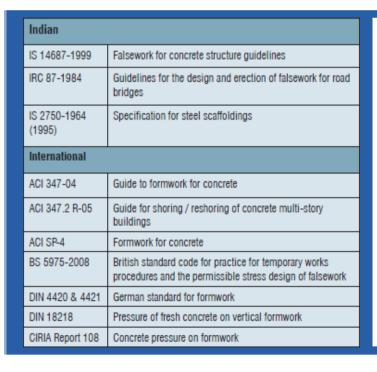

This document containing confidential formation and is the property of ALTINAY	Job No	Page	Symbo
nd can not be reproduced or used without	1133	1/1	DWG

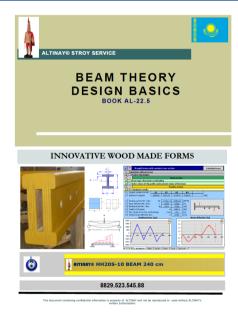

No Page Symbol Unit No Cat Type+Format Serial No

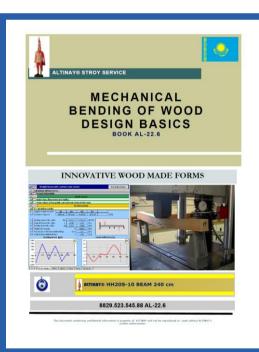

33 1/1 DWG 00 A UD 0100.3

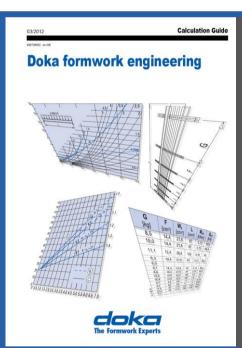
RELATED STANDARDS

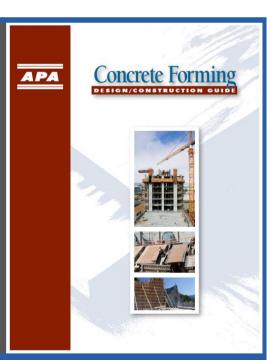
DIN 1045 DIN 1052 DIN 4113
DIN 4113
DIN 18800
DIN 1055
DIN 18218
DIN 18202
DIN 4420
DIN 4420
DIN 4422
DIN 4425
DIN 18216
DIN EN 74
DIN EN 1065






We enjoy to Share our knowledge


isit our web site librar for more details


GREEN CHOICE WOOD

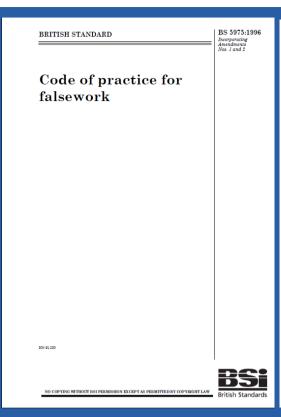
www.apawood.org

https://www.youtube.com/watch?v=gtSIF6tuz6c

_							_
	Rev-3						
	Rev-2						
	Rev-1						
	Rev	Description		Date	Name	Check	
	Date		Drawn	Check	Appr.	Scale	ir
10 Aug 2014		ıg 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva	a
					•		

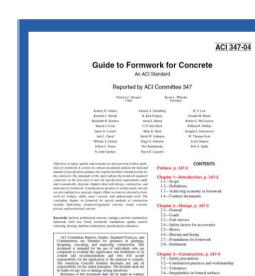



ALTINAY FORM WORK


YOUR SOLUTION PARTNER

This document containing confidential information and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
and can not be reproduced or used without ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00

LIBRARY



this began of the content document, began and adjustment of formwork and adjustment of the formwork and ad

Lateral Pressures for Formwork Design

A review of the formulas to determine the pressure of fresh concrete

BY M.K. HURD

Teth concrete corets pressure on vertical form surfaces, at and an assessment of that pressure is needed for designing forms. In the subjects theory, been concrete acts on a hard exerting pressure equally in all directions at end as a hard exerting pressure of equally in all directions at end as a hard exerting pressure of exerting the surface of the exerting pressure of exerting the pressure decr. It has reasonable because the fresh concrete behaves much like a fluid at laid and the exerting the concrete and the exerting the concrete in the exerting the concrete and the exerting the concrete's actual pressure is needed.

But concrete is not a true fluid, and some method of evaluating the concrete's actual pressure is needed.

Full control is not a true fluid, and come method of evaluating the concrete's actual pressure is needed.

of lateral pressure elop pressure form design. A formulas, with ACT's first formwork form varies over time, the designer usually Document No. :: IIIK GSDMA-Wind02-V5.0
:: IIIK GSDMA-Wind04-V5.0
Final Report B. Wind Codes
IITK-GSDMA Project on Building Codes

IS: 875(Part3): Wind Loads on Building Codes

And Structures
-Proposed Draft & Commentary

By

Dr. Prem Krishna
Dr. Krishen Kumar
Dr. N.M. Blandari
Department of Cycl Beginseering
Indian Institute of Technology Roorkee
Roorkee

www.apawood.org

https://www.youtube.com/watch?v=gtSIF6tuz6c

	Rev-3						1
	Rev-2						
	Rev-1						
1	Rev	De	scription	Date	Name	Check	
	D	ate	Drawn	Check	Appr.	Scale	ir
	10 Au	ıg 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva	а
			<u> </u>				

T. A.

ALTINAY FORM WORK

YOUR SOLUTION PARTNER

	This document containing confidential information and is the property of ALTINAY and can not be reproduced or used without	Job No					Type+Format	Serial No	Rev
va	ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00

UNIT CONVERSION

Convert-me.Com on the Web since 1996

Instant Distance and Length Conversion

convert units easily

Metric System

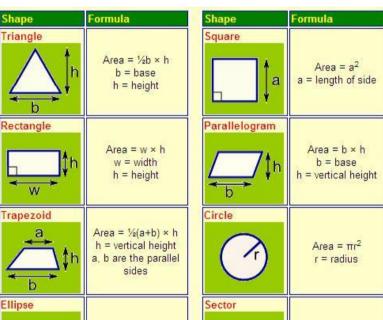
Length/Uzunluk

	Yard	Foot	Inch	Meter/cm
1 Mile	1760	5280	6280	1609.3
1 Yard		3	36	0.9144
1 Foot	0.3333		12	0.3048
1 Inch	0.0278	0.083		2.54
1 Meter	1.0936	3.281	39.37	

			0	
	16	X		
V .	11	14	17	
	SEE	9		3
			~	Tentan

	1"	2"	3"	4"	5"	6"

	mm	25.40	50.80	76.20	101.60	127.00	152.40
1/16"	1.587	26.99	52.39	77.79	103.19	128.59	153.99
1/8"	3.175	28.58	53.98	79.38	104.78	130.18	155.58
3/16"	4.761	30.16	55.56	80.96	106.36	131.76	157.16
1/4"	6.350	31.75	57.15	82.56	107.95	133.35	158.77
3/8"	9.525	34.93	60.33	85.73	111.13	136.53	161.93
1/2"	12.700	38.10	63.50	88.90	114.30	139.70	165.10
5/8"	15.875	41.28	66.68	92.08	117.48	142.88	168.29
3/4"	19.050	44.45	69.85	95.25	120.65	146.05	171.45
7/8"	22.225	47.63	73.03	98.43	123.83	149.23	174.63


Instant Area Conversion

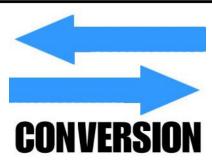
convert units easily

	Yard²	Foot²	Inch²	Meter/cm²
		1		
1 Mile ²	3097600	27878400	4014489600	2588881
1 Yard²		9	1296	0.8361
1 Foot²	0.1111		144	0.0929
1 Inch²	0.0008	0.0069		6.4516
1 Meter ²	1.1960	10.76	1550	
1 Acre²	4840	43546	6272850	4047

Area = πab a= half of minor axis

b= half of major axis

Convert-me.Com on the Web since 1996


Меры и веса. Онлайновый конвертер величин. Конвертировать единицы измерения? Легко!

http://www.convert-me.com/ru/

Rev-3					
Rev-2					
Rev-1					
Rev	Description		Date	Name	Check
D	ate	Drawn	Check	Appr.	Scale
10 Au	ıg 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva

Area = $\frac{1}{2}r^2\theta$

r = radius

angle in radians

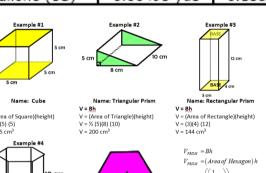
ALTINAY FORM WORK

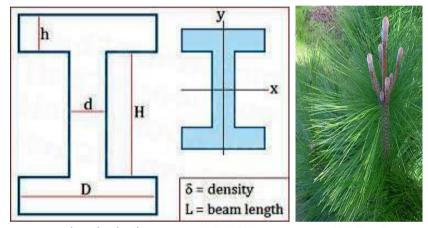
YOUR SOLUTION PARTNER

nis document containing confidential mation and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
can not be reproduced or used without ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00

UNIT CONVERSION

Convert-me.Com on the Web since 1996


Instant Capacity and Volume Conversion


convert units easily

http://www.convert-me.com/en/convert/volume/

	Yard3	Foot3	Inch3	Meter3/Liter
1 Yard3		27 ft3	46656 in3	0.7646 m3
1 Foot3	0.0037 yd3		1728 in3	0.02832 m3
1 Inch3	0.0000215 yd3	0.0006 ft3		0.0000164 m3
1 Meter3	1.307 yd3	35.32 ft3	61023 in3	
1 Gallone (UK)	0.00595 yd3	0.1605 ft3	277.4 in3	4.546Lt
1 Gallone (US)	0.00495 yd3	0.1337 ft3	231 in3	3.785 Liter

latewood

http://www.had2know.com/technology/l-beam-calculator-moments-engineering.html http://www.had2know.com/technology/conversion-calculator-length-area-volume.html

 $V_{PRISM} = \left(\left(\frac{1}{2} \right) (3\sqrt{3})(36) \right) 10$

http://www.fao.org/docrep/w5796e/w5796e06.htm

http://www.onlineconversion.com/density_common.htm

Convert-me.Com on the Web since 1996

Меры и веса. Онлайновый конвертер величин. Конвертировать единицы измерения? Легко!

http://www.convert-me.com/ru/ ¬Пт для РОССИЙСКОЙ НАЖМИТЕ ЗДЕСЬ

cork cambium © 2006 Merriam-Vebster Inc.

Convert-me.Com on the Web since 1996

Instant Area Conversion

convert units easily

http://www.convert-me.com/en/convert/weight/

	Pounds	Kilogram
1 Pound		0.4536 kg
1 Kilogram	2.2046 Lbs	
1 US Tone	2000.00 Lbs	907.20 kg
1 UK Ton	2240.00 Lbs	1016.00 kg
1 Mton	2204.60 Lbs	1000.00 kg
1 Ounce	0.0624 Lbs	0.0283 kg

Convert-me.Com on the Web since 1996

Units of Force Instant Conversion

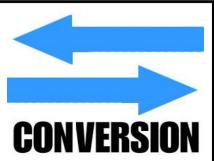
convert units easily

http://www.convert-me.com/en/convert/force/

	Newton	Pounds
1 Lbs	4.4482 N	
1 Kip	4448	1000 Lbs
1 N		0.2248 Lbs
1 kN		224.8 Lbs
1 lLbs/ft	0.0146 kN/m	
1 kN/m		68.6 kN/ft
1 ksi (kips/in2)	6.89 MN/m2	1000 psi
1 psi (Lbs/in2)	6.89 kN/m2	
1 psf (Lbs/ft2)	0.0479 kN/m2	
1 kN/m2		20.9 Lbs/ft2

http://en.wikipedia.org/wiki/Kilogram-force




The SI base unit for mass is the kilogram. 1 kilogram is equal to 9.80665002864 Newton.

http://www.appmeas.co.uk/free-engineering-unit-conversion-program.html

Rev-3					
Rev-2					
Rev-1					
Rev	Description		Date	Name	Check
D	ate	Drawn	Check	Appr.	Scale
10 Au	ıg 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva

VOLID SOLUTION DAPTNED

ALTINAY FORM WORK

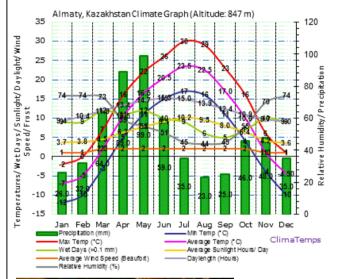
YOUR SOLUTION PARTNER

his document containing confidential rmation and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
can not be reproduced or used without ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00

UNIT CONVERSION

Convert-me.Com on the Web since 1996

Instant Temperature Conversion

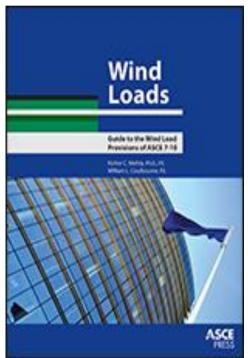

convert units easily

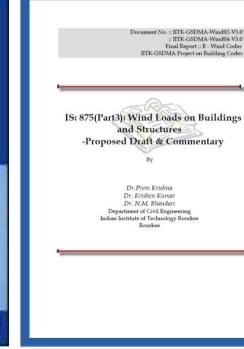
http://www.convert-me.com/en/convert/temperature/

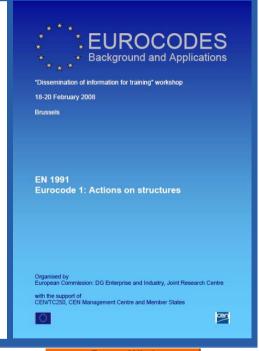
http://www.world-climates.com/city-climate-almaty-kazakhstan-asia/

	Celcius	Fahrenheit
Celcius		9/5+32
	(x-32)5/9	

Меры и веса. Онлайновый конвертер величин. Конвертировать единицы измерения? Легко!


77° F 25° C 68° F 20° C





	m/s	km/hr	q (kN/m2)	cp=1.3 kN/m2
	WIND V	ELOCITY	DYNAMIC WIND PRESSURE	WIND PRESSURE w FOR WALL FORMWORK
0 to 8 m above grade	28.3	102	0.5	0.65
8 to 20m above grade	35.8 129		0.8	1.04
20 to 100m above grade	42	151	1.1	1.43
Over 100m	45.6	164	1.3	1.69

Wind pressure **w** is obtained by multiplying the dynamic wind pressure **p** with the coefficient **cp** Generally for wall form work cp=1.3

W_e	=	q_p	(z_e)	$\cdot c^{b}$

_	Wind pressure on surface in kN/m ²
	Peak velocity pressure in kN/m² (old term: impact pressure)
Ze	Reference height, height above ground
Ср	Aerodynamic coefficient

http://mobilcrane.com/standard.asp?case_vis=artikkel&artikkelid=161

http://www.convert-me.com/ru/ ДЛЯ РОССИЙСКОЙ НАЖМИТЕ ЗДЕСЬ http://www.appmeas.co.uk/free-engineering-unit-conversion-program.html

	Rev-3					
	Rev-2					
	Rev-1					
5	Rev	Description		Date	Name	Check
	D	ate	Drawn	Check	Appr.	Scale
	10 Au	Aug 2014 A.Bicanova		F.Yasar	F.Yasar	J.Dusembayeva

http://www.steelconstruction.info/Design_software_and_tools

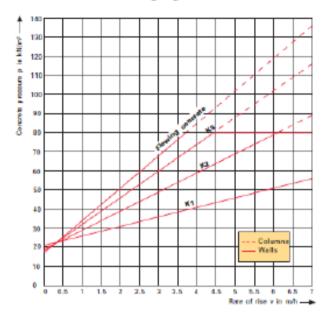
ALTINAY FORM WORK

YOUR SOLUTION PARTNER

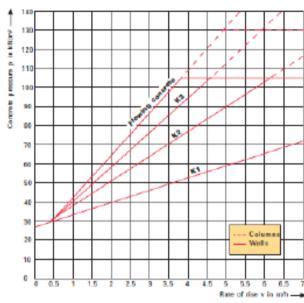
TOMOR	ROW V	NORLD	TODAY

This document containing confidential information and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
and can not be reproduced or used without ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00

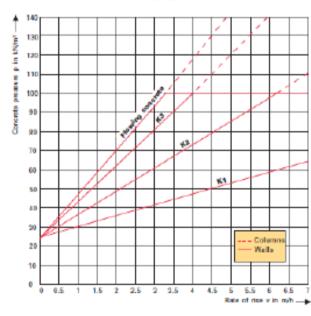
(C) Kiewin

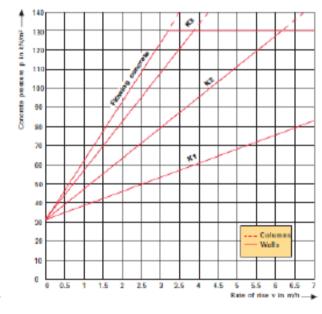

X Gün sonra ulaşılabilecek beton mukavemeti tahmini Portland 45 Betonun X gün sonra ulaşabilecegi beton mukavemeti Santigrad cinsinder Sertlesm sicakliči 28 41% 45% 50% 0°C 20% 29% 35% 30% 41% 66% 5°C 49% 56% 60% 32% 44% 59% 96% 10 °C 16% 70% 80% 88% 20 °C 46% 58% 70% 80% 88% 94% 100% 64% 101%

	Portla	Portland 35 Betonun X gün sonra ulaşabilecegi beton mukavemeti yüzdesi										
Santigrad cinsinden	Number of Days											
	1	2	3	5	7	10	14	28				
0°C			16%	26%	34%	42%	49%	58%				
5°C			30%	41%	49%	56%	62%	71%				
10°C		35%	42%	55%	65%	75%	85%	99%				
20 °C	35%	45%	52%	63%	71%	80%	88%	1009				
30 °C	42%	53%	61%	72%	80%	88%	95%	106%				

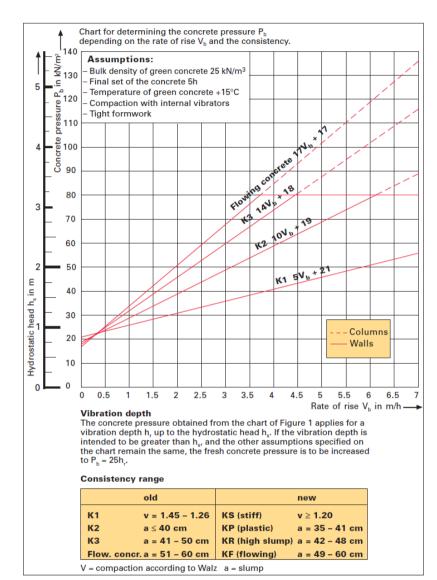

FRESH CONCRETE PRESSURE ON VERTICAL FORMWORK

Examples for concrete pressures with differing concrete temperatures, with and without retarding agent.


1. Concrete temperature 15 °C without retarding agent


2. Concrete temperature 5 °C without retarding agent

3. Concrete temperature 15 °C with 5 h retarding agent


4. Concrete temperature 5 °C with 5 h retarding agent

DIN 18218

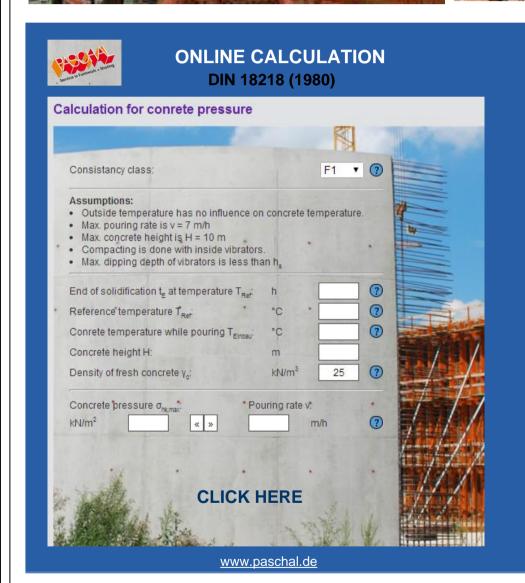
Concrete pressure

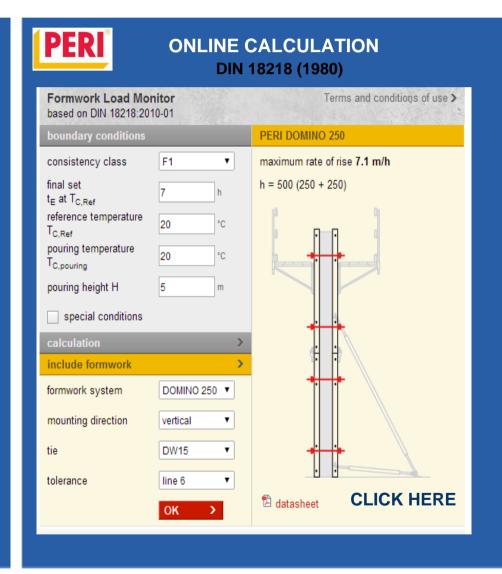
	Rev-3					
	Rev-2					
i	Rev-1					
1	Rev	Description		Date	Name	Check
l	Date Drawn		Drawn	Check	Appr.	Scale
į	10 Au	O Aug 2014 A.Bicanova		F.Yasar	F.Yasar	J.Dusembayeva

ALTINAY FORM WORK

YOUR SOLUTION PARTNER

This document containing confidential nformation and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
and can not be reproduced or used without ALTINAY's written consent.	1133	1/1	DWG	00	Α	UD	0100.3	00


FRESH CONCRETE PRESSURE ON VERTICAL FORMWORK



Concrete consistency acc. to DIN 18218 (1980) or DIN 1045 (1978)	Slump [a] acc. to DIN 1045 (1978) Diameter in mm	Concrete consistency acc. to DIN 1045-2 / DIN EN 206-1 (2001)	Slump [a] acc. to DIN 1045-2 (2001) Diameter in mm
K1	-	F1	≤ 340
K2	≤ 400	F2	350 to 410
K3	410 to 500	F3	420 to 480
Flowable concrete ^a	500 to 600 °	F4	490 to 550
		F5	560 to 620
_ b		F6	≥ 630
		SCC	≥ 700 °

- ^a Flowable concrete is defined acc, to the DAfStb-guideline for flowable concrete (1995).
- The concrete consistencies F5, F6 and SCC are not covered by the DIN standard 18218 (1980).

 For a slump [a] ≥ 700 mm the DAfstb-guideline "Self-compacting concrete" has to be considered.

http://www.paschal.de/english/service/concretepressurecalculation.php

http://www.peri.co.za/en/knowledge/formwork load monitor/formwork load monitorapp.cfm

http://www.doka.com/web/tools/apps/doka-apps.me.php

D						
Rev-	+					
Rev-	1					
Rev	De	escription	Date	Name	Check	
	Date Drawn		Check	Appr.	Scale	info
10 A	ug 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva	and

ALTINAY FORM WORK

YOUR SOLUTION PARTNER

TOMORROW WORLD TODAY

This document containing confidential information and is the property of ALTINAY and can not be reproduced or used without ALTINAY's written consent.

Job No Page Symbol Unit No Cat Type+Format Serial No Rev

Cement Basics-Types of Cement

» Types of Portland Cement

Portland cements are hydraulic cements composed primarily of hydraulic calcium silicates. ASTM C 150, *Standard Specification for Portland Cement*, recognizes eight types of Portland cement:

Type I and Type IA*

General purpose cements suitable for all uses where the special properties of other types are not required.

Type II and Type IIA*

Type II cements contain no more than 8% tricalcium aluminate (C_3A) for moderate sulfate resistance. Some Type II cements meet the moderate heat of hydration option of ASTM C 150.

What's a Type I/II cement?

Portland cements that meet Type II requirements also must meet all of the requirements of Type I cements, except those for compressive strength. Type I/II cements meet both the C₃A requirements of Type II cement and the compressive strength requirements of Type I cements.

Type III and Type IIIA*

Chemically and physically similar to Type I cements except they are ground finer to produce higher early strengths.

Type IV

Used in massive concrete structures where the rate and amount of heat generated from hydration must be minimized. It develops strength slower than other cement types.

Type V

Contains no more than 5% C_3A for high sulfate resistance. *Air-entraining cements

» Types of Blended Cements

Blended hydraulic cements are produced by intimately and uniformly intergrinding or blending two or more types of fine materials. The primary materials are portland cement, ground granulated blast furnace slag, fly ash, silica fume, calcined clay, other pozzolans, hydrated lime, and pre-blended combinations of these materials.

ASTM C 595, Specification for Blended Hydraulic Cements, recognizes five primary classes of blended cement:

Type IS-Portland blast furnace slag cement

Type IP and Type P-Portland-pozzolan cement

Type I(PM)-Pozzolan-modified portland cement

Type S-Slag cement

Type I(SM)-Slag-modified portland cement

CONCRETE TYPES AND CONSISTENCY

This information was excerpted from PCA's Portland, Blended, and Other Hydraulic Cements, a 32-page publication covering numerous cement types and their physical properties

» Types of Hydraulic Cements

All portland and blended cements are hydraulic cements. "Hydraulic cement" is merely a broader term. ASTM C 1157, Performance Specification for Hydraulic Cements, is a performance specification that includes portland cement, modified portland cement, and blended cements. ASTM C 1157 recognizes six types of hydraulic cements:

Type GU-general use

and drawbacks of each

Type HE-high early strength

Type MS-moderate sulfate resistance

Type HS-high sulfate resistance

Type MH-moderate heat of hydration

Type LH-low heat of hydration

This information was excerpted from PCA's *Portland, Blended, and Other Hydraulic Cements*, a 32-page publication covering numerous cement types and their physical properties.

Other resources for information on Portland cement production and technology:

Cement Specification Emphasizes Performance

ASTM C 1157, which now includes both blended and Portland cements, moves away from requirements on chemical composition

Portland Cement Characteristics-1998

Results of a survey of cement manufacturers compiles information on currently available cements

Prescriptive vs. Performance Specifications for CementsA description of the differences and some of the potential benefits

Concrete consistency Slump [a] Concrete consistency Slump [a] acc. to DIN 1045 (1978) acc. to DIN 1045-2 (2001) acc. to DIN 18218 (1980) acc. to DIN 1045-2 / or DIN 1045 (1978) Diameter in mm DIN EN 206-1 (2001) Diameter in mm K1 ≤ 340 F1 K2 ≤ 400 F2 350 to 410 K3 410 to 500 F3 420 to 480 Flowable concrete a 500 to 600 a F4 490 to 550 560 to 620 F6 ≥ 630 SCC ≥ 700 °

- ^a Flowable concrete is defined acc. to the DAfStb-guideline for flowable concrete (1995).
- ^b The concrete consistencies F5, F6 and SCC are not covered by the DIN standard 18218 (1980).
- ^c For a slump [a] ≥ 700 mm the DAfStb-guideline "Self-compacting concrete" has to be considered.

Consistency means amount of water needed to prepare a plastic mix. Consistency test is done using Vicat's appartus. Consistency of cement should be less than 30%consistency test is used to find the amount of water to be mixed with cement. It is necessary to find the consistency because amount of water present in the cement paste may affect the setting time. standard consistency is indicated by the vicat plunger reading (5 to 7) from the bottom of mould(IS 4031 (part 4)1988)

The **concrete slump test** is an empirical test that measures the workability of fresh <u>concrete</u>.

More specifically, it measures the consistency of the concrete in that specific batch. This test is performed to check the consistency of freshly made concrete. Consistency is a term very closely related to workability. It is a term which describes the state of fresh concrete. It refers to the ease with which the concrete flows. It is used to indicate the degree of wetness. Workability of concrete is mainly affected by consistency i.e. wetter mixes will be more workable than drier mixes, but concrete of the same consistency may vary in workability. It is also used to determine consistency between individual batches.

The test is popular due to the simplicity of apparatus used and simple procedure. Unfortunately, the simplicity of the test often allows a wide variability in the manner that the test is performed. The slump test is used to ensure uniformity for different batches of similar concrete under field conditions, [1]:127,128 and to ascertain the effects of plasticizers on their introduction. [1]:134 In India this test is conducted as per IS specification.

ESS KN	
The state of the s	

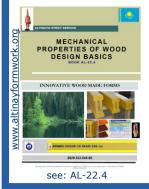
							×
100	Rev-3						
3	Rev-2						
	Rev-1						
ĺ	Rev	Description		Description Date Name		Check	
	D	ate	Drawn	Check	Appr.	Scale	i
	10 Au	ug 2014 A.Bicanova		ıg 2014 A.Bicanova F.Yasar F.Yasar		J.Dusembayeva	a

ALTINAY FORM WORK

YOUR SOLUTION PARTNER

	This document containing confidential information and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
eva	and can not be reproduced or used without ALTINAY's written consent.		1/1	DWG	00	Α	UD	0100.3	00

Structural Design in Wood


FORMWORK LINING MATERIAL

Formwork and concrete form types[edit] Formwork comes in several types:

Traditional timber formwork. The formwork is built on site out of timber and plywood or moisture-resistant particleboard. It is easy to produce but time-consuming for larger structures, and the plywood facing has a relatively short lifespan. It is still used extensively where the labour costs are lower than the costs for procuring reusable formwork. It is also the most flexible type of formwork, so even where other systems are in use, complicated sections may use it.

http://en.wikipedia.org/wiki/Formwork

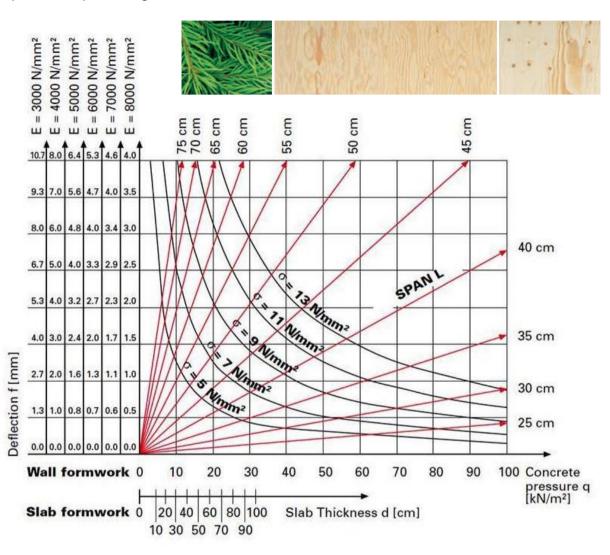


TABLE 3.1: BASIC WORKING STRESSES AND ELASTIC MODULI OF FORMWORK PLYWOOD (MPa)

Stress	Stress Value MPa									
Grade	Bending F _b	Tension F _t	Shear F _s	Compression F _c	Modulus of Elasticity E	Modulus of Rigidity G				
F11	11.0	6.6	1.80	8.3	10500	525				
F14	14.0	8.4	2.05	10.5	12000	625				
F17	17.0	10.2	2.30	12.8	14000	700				
F22	22.0	13.2	2.30	16.5	16000	800				
F27	27.5	16.5	2.30	20.6	18500	925				

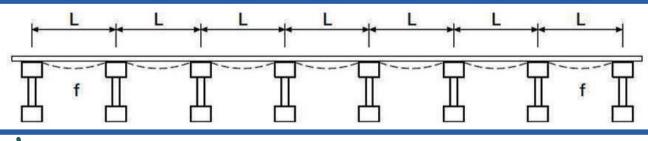

The above basic working stresses must be modified with the appropriate factors from AS 1720 for the concrete formwork application to establish actual design stresses. The duration of load factor K₁ has been taken as 1.65 from AS 1720.

TABLE 3.2: SECTION PROPERTIES, MOMENT OF INERTIA (I) AND SECTION MODULUS (Z) FOR STANDARD PLYWOOD FORMWORK CONSTRUCTIONS PER 1mm WIDTH

	Identification Code	Nominal Plywood	Plywood Face Grain Parallel to Span			Face Grain Jar to Span
		Thickness (mm)	Moment of Inertia (I) mm ⁴ / mm	Section Modulus (Z) mm ³ / mm	Moment of Inertia (I) mm ⁴ / mm	Section Modulus (Z) mm ³ / mm
1	12-10-5	12	70	11.0	80	15.5

The modulus of elasticity and the permissible tension is based on the grade and moisture content of the plywood.

Maximum Moment

Maximum deflection $f=0.0068xqxL^4/ExI$

 $M=0.1071xqxL^2$

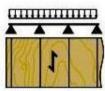
	Rev-3		
10	Rev-2		
	Rev-1		
1500	Rev	De	sc
Mary Street	D	ate	
1000			

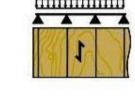
ALTINAY FORM WORK

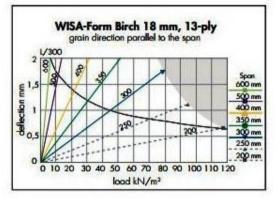
YOUR SOLUTION PARTNER

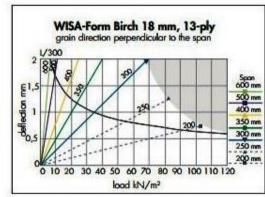
					O IVI O I	***	on non		` '
	This document containing confidential information and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
⁄a	and can not be reproduced or used without ALTINAY's written consent.		1/1	DWG	00	Α	UD	0100.3	00

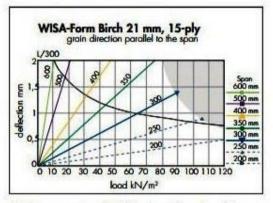
FORMWORK LINING MATERIAL

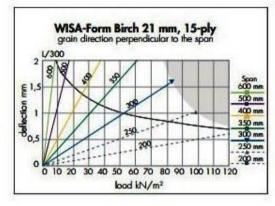

Face grain parallel to the span (11)


grain direction of surface veneers




Face grain perpendicular to the span (1-)


> grain direction of surface veneers



Moisture content 27 %, short time loading

Partial safety factor for the material is 1.3. Partial safety factor for the loads is 1.2

(according to the Handbook of Finnish Plywood, 2004).

Deflection limit L/300 of the span

Support width is not taken into account in calculations

40

45

50

38.4

43.3

48.1

41.2

46.4

51.5

Plywood Properties

Plywood is a wooden panel composed of thin cross-bonded veneers glued together. For greater strength properties the veneers are laid crosswise, i.e. the grain directions of two consecutive layers form a 90° anale.

Conifer

Conifer

Weight***

kg/m²

4.1

5.5

6.9

8.3

9.7

11.0

12.4

13.8

No of plies

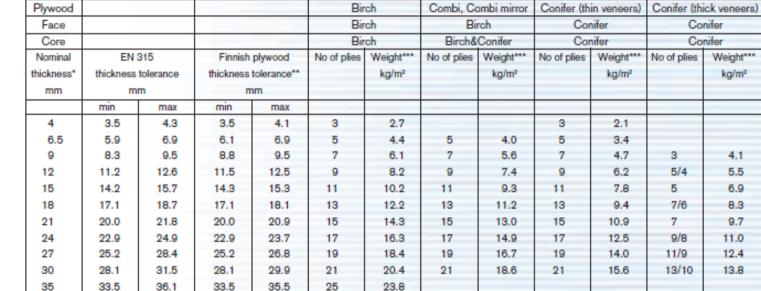
3

5/4

5

7/6

9/8


11/9

13/10

7

http://www.wisaplywood.com/en/plywood-and-veneer/plywood/plywood-properties/Pages/default.aspx

Table 2-3. Standard plywood products

29

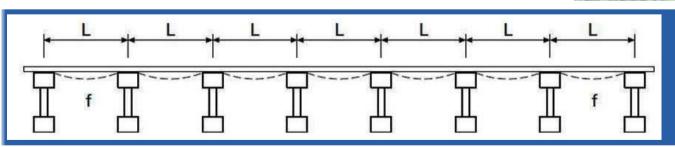
32

35

27.2

30.6

34.0



The modulus of elasticity and the permissible tension is based on the grade and moisture content of the plywood.

38.8

43.6

48.5

41.2

46.4

51.5

Maximum deflection $f=0.0068xqxL^4/ExI$ Maximum Moment

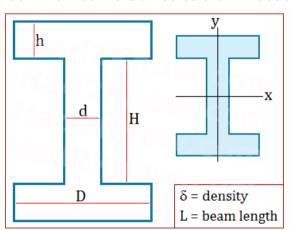
 $M = 0.1071 qL^2$

	Rev-3					
I	Rev-2					
ı	Rev-1					
l	Rev	Description		Date	Name	Check
	D	ate	Drawn	Check	Appr.	Scale
	10 Au	ıg 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembayeva

This document containing confidential formation and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
ad can not be reproduced or used without		1/1	DWG	00	Α	UD	0100.3	00

Moments and Bending Moments of Inertia, Area, Mass

I-Beam Calculator


Moments and Bending Moments of Inertia, Area, Mass

I-beams, also called "wide flange" or W-beams, are preferred in construction because their I-shape allows them to withstand strong shearing and bending forces. See also Hollow Rectangular Beams. To calculate loads and forces on an I-beam, you need to know the cross-sectional area, the moments of inertia in the x- and y-directions, as well as the bending moments of inertia (aka area moments of inertia) in the x- and y-directions.

Using the image above as a guide, enter the dimensions of the I-beam into the calculator. D is the width of the flange, d is the width of the web (center support column), H is the height of the web, and h is thickness of the flange. In the calculator, L is the total length of the beam and δ is the density of the material.

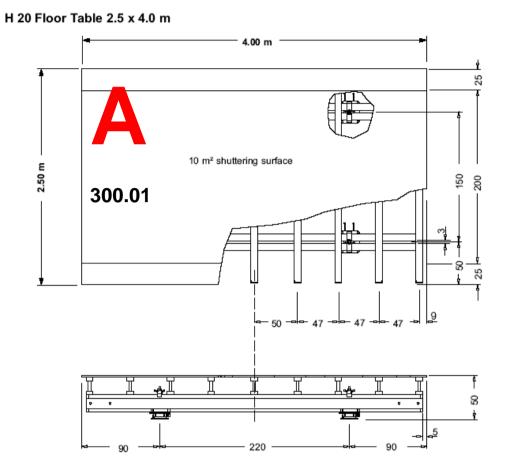
For the calculator, enter distances in centimeters and the density in kg/cm3. Remember 100 cm = 1 meter and 1000 grams = 1 kg. Use the Had2Know conversion calculator if needed.

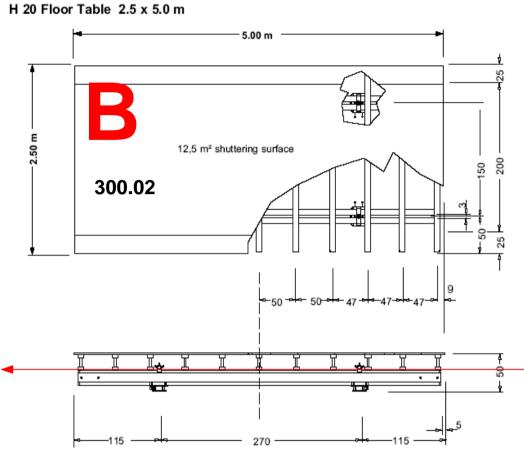
D = d = H = h =	2.7	cm
H =		cm
	12	
h =	12	cm
1	4	cm
L=	100	cm
δ =	0.55	kg/cm ³
Beam 96 Beam 1 53 Momer	Volume = 40 Mass = 02 nt of Inertia I _X =	cm ² cm ³ kg
Momer	63184 nt of Inertia I _Y = 38189.23167	kg·cm ²

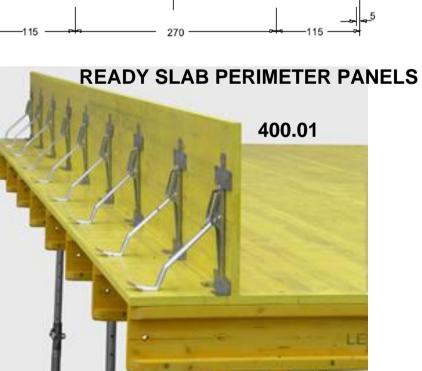
http://www.had2know.com/technology/I-beam-calculator-moments-engineering.html

http://www.engineersedge.com/calculators.htm http://www.onlinestructuraldesign.com/calculations

Rev-3					
Rev-2					
Rev-1					
Rev	v Description		Date	Name	Check
D	ate	Drawn	Check	Appr.	Scale
10 Aı	ıa 2014	A.Bicanova	F.Yasar	F.Yasar	J.Dusembaveva




ALTINAY FORM WORK


This document containing confidential information and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
and can not be reproduced or used without ALTINAY's written consent.		1/1	DWG	00	Α	UD	0100.3	00

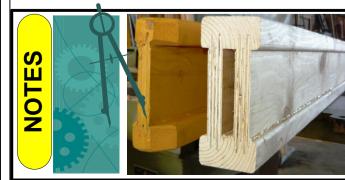
Балка Деревянная для монолитного строительства от производителя

Для системы перекрытий разборно-переставной опалубки

WEIGHT=5.00 kg/m

H20-Mechanical Characteristics:

Elastic Module:	E=105,000 kg/cm2
Resistance Module:	W=460 cm3
Inertia Module:	J=4600 cm4
Fir wood bending R:	Z=1,20 kN/cm2
Bending Moment:	M=5,00 kNm
Shearing Force:	T=11 kN
Weight:	Pm=5,0 Kg/m



LOAD ASSUMPTIONS:

Weight of concrete:	26.00 kN/m2
Dead load table:	0.40 kN/m2
Live Load:	

Slab	Probe Load	Probe Load
Thickness:	A (kN)	A (kN)
T (cm)	Slab=2.50X4.00	Slab=2.50X5.00
10	10.90	13.60
15	14.10	17.70
20	17.40	21.70
25	20.60	25.80
30	24.00	30.00
35	27.90	34.90
40	31.80	
45	35.70	

RAEDY SLAB FORMS

300.01

Rev-3 Rev-2 Rev-1						
Rev	v Description		Date	Name	Check	
Date Drawn		Drawn	Check	Appr.	Scale	Γ
		A.Bicanova	F.Yasar	F.Yasar	J.Dusembaeva	

SLAB 2.50X4.00 mt SLAB 2.50X5.00 mt

ALTINAY LIBRARY

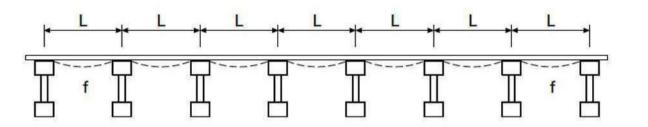
SLAB FORM WORKS

This document containing confidential information and is the property of ALTINAY and can not be reproduced or used without ALTINAY's written consent.

TOMORROW WORLD TODAY

 Job No
 Page
 Symbol Unit No Cat
 Type+Format
 Serial No
 Rev

 8829
 1/1
 DWG
 00
 A
 UD
 0100.3
 00


Балка Деревянная для монолитного строительства от производителя

Для системы перекрытий разборно-переставной опалубки

READY SLABS FOR ANY SIZE

The modulus of elasticity and the permissible tension is based on the grade and moisture content of the plywood (see page 8).

Maximum deflection $\mathbf{f} = \frac{0.0068 \cdot \mathbf{q} \cdot \mathsf{L}^4}{\mathsf{F} \cdot \mathsf{L}}$

Maximum Moment $\mathbf{M} = 0.1071 \cdot \mathbf{q} \cdot \mathbf{L}^2$ (valid for at least 3 bays)

	SLAB FORM WORK						SPAN BETWEEN LOWER BEAMS (m)							
Slab	Load			tances b=(m)	Span between probes								
	1.8172	0.5	0.625	0.675	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	3.00	3.50
cm	kN/m2	Lov	ver grid dis	tances a=(m)									
10	4.35	3.67	3.40	3.33	3.20	2.91	2.70	2.48	2.29	2.14	2.02	1.92	1.69	1.44
12	4.87	3.47	3.22	3.15	3.03	2.75	2.55	2.34	2.17	2.03	1.91	1.81	1.51	1.29
14	5.39	3.30	3.07	3.00	2.89	2.62	2.43	2.22	2.06	1.93	1.81	1.63	1.36	1.17
16	5.91	3.17	2.94	2.88	2.77	2.52	2.33	2.12	1.97	1.84	1.65	1.49	1.24	1.06
18	6.43	3.05	2.83	2.77	2.67	2.42	2.23	2.04	1.89	1.71	1.52	1.37	1.14	0.98
20	6.95	2.95	2.74	2.68	2.58	2.34	2.15	1.96	1.81	1.58	1.41	1.27	1.06	0.90
22	7.47	2.86	2.66	2.60	2.50	2.27	2.07	1.89	1.68	1.47	1.31	1.18	0.98	0.84
24	7.99	2.79	2.59	2.53	2.43	2.21	2.00	1.83	1.57	1.38	1.22	1.10	0.92	0.79
26	8.51	2.72	2.52	2.47	2.37	2.16	1.94	1.72	1.48	1.29	1.15	1.03	0.86	0.74
28	9.03	2.65	2.46	2.41	2.32	2.10	1.88	1.62	1.39	1.22	1.08	0.97	0.81	0.70
30	9.61	2.59	2.41	2.36	2.27	2.04	1.82	1.53	1.31	1.14	1.02	0.92	0.76	0.65
35	11.17	2.47	2.29	2.24	2.16	1.89	1.58	1.31	1.13	0.98	0.88	0.79	0.66	0.56
40	12.73	2.36	2.19	2.15	2.05	1.73	1.38	1.15	0.99	0.86	0.77	0.69	0.58	0.49
45	14.29	2.27	2.11	2.05	1.93	1.54	1.23	1.03	0.88	0.77	0.68	0.62	0.51	0.44
50	15.85	2.20	2.01	1.95	1.83	1.39	1.11	0.93	0.79	0.69	0.62	0.56	0.46	0.40
55	17.41	2.13	1.92	1.86	1.68	1.26	1.01	0.84	0.72	0.63	0.56	0.51	0.42	0.36
60	18.97	2.05	1.84	1.74	1.55	1.16	0.93	0.77	0.66	0.58	0.52	0.46	0.39	0.33
65	20.53	1.97	1.71	1.61	1.43	1.07	0.86	0.71	0.61	0.54	0.48	0.43	0.36	0.31
70	22.09	1.90	1.59	1.49	1.33	1.00	0.80	0.66	0.57	0.50	0.44	0.40	0.33	0.28

Dead weight of formwork weight:	a=0.35 kN/m2					
Weight of concrete:	b=25 kN/m3xd(m)					
Changing Load:	p=0.20xb (1.50 ≤ p ≤ 4,24 kN/					
Total load:	g=a+b+c					
Maximal deflection moment	5.00 kN					
Moment of Inertia Ix:	4613 cm4					
Maximal deflection:	f=1/500					

							1
	Rev-3						
	Rev-2						Ŀ
	Rev-1	Rev-1					
	Rev	De	scription	Date	Name	Check	
Ì	Date Drawn		Check	Appr.	Scale	Γ	
			E Vacar	E Vacar	I Ducambaaya	ı	

FORM WORK SYSTEMS

ALTINAY LIBRARY

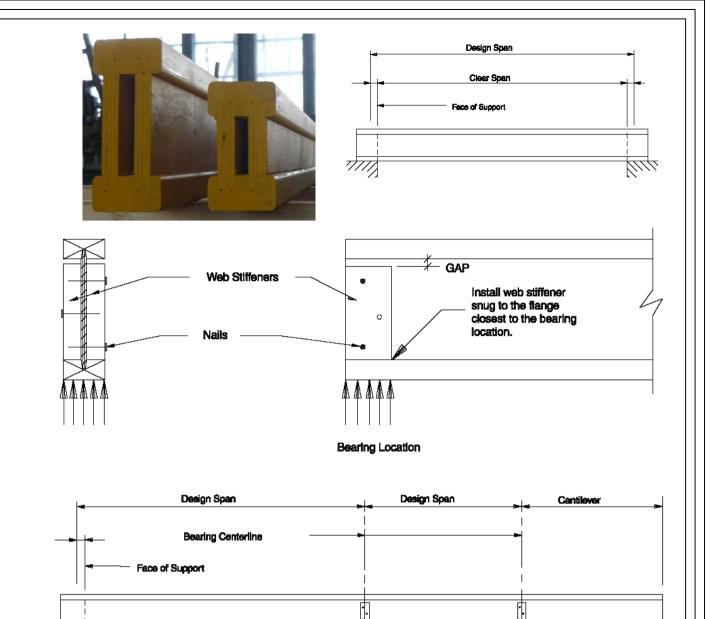
SLAB SIZING

This document containing confidential information and is the property of ALTINAN

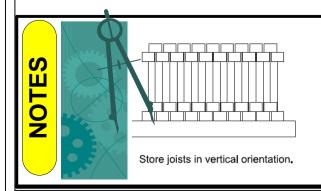
TOMORROW WORLD TODAY

 Job No
 Page
 Symbol Unit No Cat
 Type+Format
 Serial No
 Rev

 8829
 1/1
 DWG
 00
 A
 UD
 0100.3
 00



HH20S HH16S HH12S
FORM WORK GIRDERS
STANDARD FLANGE, DOUBLE WEB, LONG LIFE, SELF WEDGING


	H20S	HH16S	HH12S
Permitted shear force-Q (kNewton)	13.00	11.00	8.50
Permitted bending moment (kNm)	7.00	5.00	4.00
Moment of Inertia (Iv=cm4)			
Weight (kg)	5.90		

TOMORROW NEW FORMWORK TODAY

INTERIOR SPAN

handle joists flat.

Name	Check
Appr.	Scale
F.Yasar	J.Dusembaeva
_	Appr.

END SPAN

s document containing confidential ation and is the property of ALTINAY	Job No	Page	Symbol	Unit No	Cat	Type+Format	Serial No	Rev
an not be reproduced or used without ALTINAY's written consent.	8829	1/1	DWG	00	Α	UD	0100.3	00